ISO 11607 - 1 & 2 Packaging for Terminally Sterilized Medical Devices

Jan Gates: Adept Packaging LLC

10X Conference, May 2019
Over 35+ years in medical devices, foods, pharmaceutical and detergent industries

Packaging engineering experience in design, material and distribution testing, material and equipment validations, PMA submissions, REACH/RoHS, EU Packaging Waste Directives, and sustainability

SoCal Institute of Packaging Professionals Chapter, Co-President

IoPP Medical Device Packaging Technical Committee, member

ASTM F02, Flexible Barrier Packaging member

ASTM D10, Rigid/Environmental Packaging and Testing committee member

D10.96 ISO TC122 SC3 TAG Liaison Chair

ISO TC122 WG5 Covenor – Vocabulary

ISO TC122 WG13 (Labels) & WG16 (Controlled Temperature Packaging) SME
Some of My Old Work
Some of My Current Work
Package Engineering Summary

- Minimize sizing to optimize shipping costs
- Reduce product breakage
- Develop packaging human factors for users (end and production)
- Good packaging is sustainable
- Minimize sizing to optimize warehousing
- Optimize packaging materials for product shelf life and costs
- Assure label legibility with use and time
- Enhanced Functionality/Utility

Package Engineering saves money
Standard Titles

ISO 11607-1: Packaging for terminally sterilized medical devices – part one
✓ Design and development

ISO 11607-2: Packaging for terminally sterilized medical devices – part two
✓ Equipment and process validations

Current revisions: 2019 February
Background

EN ISO 11607-1 & -2
- Replaced EN 868-1
- FDA harmonized with standard in 2006

AAMI TIR 22
- Issued April 2007
- US Guidance Document to EN ISO 11607-1 & -2
- More DDD guidance included for FDA

ISO/TS 16775
- Issued, May 2014, replaced TIR 22
- ISO Guidance on the application of ISO 11607-1 and ISO 11607-2
- Minor revisions to the ISO 11607-1/-2 standard

Revised ISO
- 11607-1/-2 published, February 2019
- Revisions with human factors/use added and critical process parameter definition changes
ISO 11607-1/-2 Standards

Standardized packaging for terminally sterilized medical devices

(placed packaging on the same importance level as the product; a medical device does not remain sterile without acceptable packaging; qualify/validate the packaging system)
New Terminology was Introduced

- Terminal Sterilization
- Sterile Barrier System (SBS)
- Preformed Sterile Barrier System
- Protective Packaging
- Packaging System
- Seal Integrity
- Aseptic Presentation
- Stability Testing
- Performance Testing
Sterilization validation
✓ Follow sterilization standards with worst-case situations for packaging
✓ Understand Biological Indicators (BI) and placements

Short hand → Sterilization kills the microbes inside the packaging; packaging must not have holes until opened for use
<keep holes out of the SBS during packaging, storage, shipment, and handling>

Common Types of Sterilization

- Gamma
- Ethylene oxide
- E-beam
- Hydrogen Peroxide
Shall Statements : Statements required for compliance
Sampling of Shall Statements

Over 115 “SHALL” statements in the ISO 11607 documents, this includes:

✓ Shall use sampling plans based on statistically valid rationale (-1, Clause 4.3)
✓ Shall establish and record a rationale for appropriate tests and acceptance criteria (-1/-2, Clause 4.4)
✓ Shall allow aseptic product presentation from the sterile barrier system. Note: Completing a usability evaluation can demonstration this. (-1, Clause 6.1.2)
✓ Shall have procedures for packaging system design and development (-1, Clause 6.2.1)
✓ Shall have test methods validated and documented by the laboratory performing the test (-1, Clause 4.4.3)
✓ Shall have EQ: IQ/OQ equipment (-2, Clauses 5.2 and 5.3)
✓ Shall have written preventative maintenance and cleaning schedules (-2, Clause 5.2.6)
✓ Shall have a minimum of three production runs for a PQ (-2, 5.4.4)
✓ Shall test product for acceptability after transit testing with or without the sterile barrier integrity testing (-1, Clause 8.2.1 Note 2)
✓ Shall start real time stability testing within three months of accelerated testing before commercialization (-1, Clause 8.3.4)
✓ Stability and performance testing are separate entities (-1, Clause 8.1 Note 2)
Statistical Justification

A sampling strategy is needed for a statistical justification

- Risk Assessment
- Risk Based Confidence and Reliability
- Statistically Based Sample Size

ISO standards available
Individualized by company – include a defect catalogue
ISO/ASTM standards and many books available

Statistical justification/rationale: -1, Clause 4.3
Test Method Validation

ASTM test methods must be validated in the laboratory conducting the test; publication of a method by a standards body does not make it validated in any laboratory (1, Clause 4.4.3 Note).
Shall have procedures for packaging system design and development (-1, Clause 6.2.1)

✓ Most companies have gate checks for devices included in the DDD

✓ Need to include the packaging work or have a separate DDD for packaging
Equipment EQ: IQ and OQ (-2; Clause 5.2) or EIOQ
Production Qualification (PQ)

Must be a minimum of three lots (-2; Clause 5.4.4)

Best practices include:

✓ Analyze the test lots separately to assure they are statistically equivalent*
✓ Consecutive lots used
✓ Production stoppages, material lot changes, and similar that may occur should occur during the qualification to simulate ‘normal’ production

* Remember there can be ‘no practical difference’ when something is ‘not statistically equivalent’, this must be explained in the protocol before testing or a deviation or a protocol failure is required.
Packaging Stability Testing

Aging the packaging system is independent of the physical configuration or contents, as long as:

✓ The processing is the same, and
✓ The contents do not affect the materials
✓ -1, Clause 8.1 Note 2

✓ Uses a modified Arrhenius equation:
 • Assumes the chemical reaction rate in a material is a logarithmic change for each 10 degree increase
 - $Q_{10} = 2$ is the usual assumption
 - $Q_{10} \neq 2$ for most PETG (many thermal formed trays)
 • Humidity is not part of the Arrhenius aging considerations
Relative Humidity Note

- **Relative Humidity** is the number of water molecules in the air.
- The number of molecules in the air is affected by **Temperature**.
- **Temperature and humidity** are inversely proportional (with a given quantity of moisture).

Relative Humidity = \(\frac{\text{actual vapor density}}{\text{saturation vapor density}} \) \times 100\%
Aging verses Performance Testing

Two separate entities per the FDA, ISO, and chemistry books

Aging tests a material’s stability over time

Performance testing evaluates the interaction between the packaging system and the products in response to the stresses imposed by the manufacturing (and sterilization) processes and the handling, storage, and shipping environment
Performance Testing – ASTM D4169

<table>
<thead>
<tr>
<th>Test Plan</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling</td>
<td>6 impacts, 24 inch</td>
</tr>
<tr>
<td>Vehicle Stacking</td>
<td>Apply & release calculated top load</td>
</tr>
<tr>
<td>(Compression)</td>
<td></td>
</tr>
<tr>
<td>Loose Load Vibration</td>
<td>Repetitive shock 1 hour</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>High Altitude</td>
<td>14,000 ft 1 hour</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>Three levels for trucks 3 hours</td>
</tr>
<tr>
<td>Concentrated Impact</td>
<td>1 impact 36 inches</td>
</tr>
<tr>
<td>Handling</td>
<td>5 impacts, 24 inch 6th at 48"</td>
</tr>
</tbody>
</table>

Notes:
- The test plan includes various environmental conditions and handling scenarios.
- The descriptions cover impacts, vehicle stacking, loose load vibration, high altitude, random vibration, and concentrated impact.
- Each test scenario has specific parameters, such as the number of impacts, inches, and duration.

Image:
- Images of packaging materials and tests set up, likely demonstrating the actual test setup and conditions.
Performance Test Standards

- **ASTM D4169**: Standard Practice for Performance Testing of Shipping Containers and Systems
- **ASTM D7386**: Standard Practice Performance Testing of Packages for Single Parcel Delivery Systems
- **ISTA 3A or Higher**
- **ISTA 2A** Package Conditioning for Testing
- **ASTM D4332**: Standard Practice for Conditioning Containers, Packages, or Packaging Components for Testing
- **ASTM F2825**: Standard Practice for Climatic Stressing of Packaging Systems for Single Parcel Delivery

Develop performance standards based on company distribution system → the best option but hard for many companies
Performance Defect Example

✓ Performance defect (package design issue), not an aging defect

✓ Do not confuse the two types of defects
Product Acceptability after Performance/ Distribution/Transit/Ship Testing

“Shall” statement to test product (-1, Clause 8.2.1 Note 2)

Package Engineering or Product Development must test the product after transit tests

Logistically, usually easiest to keep product testing and package testing separate

✓ However, must assure both departments use the same transit tests
✓ Many companies test packaging and product separately
Understand the Distribution System Using...
Distribution Mapping -- General

Pack for sterilization → Load truck → Ship to hub

Note: 1 to 200 Hz vibration

Unload truck → Transfer/sorting hub

Note: Over 150 g drops measured

Load truck → Ship to airport → Unload truck

Ship to customer

Note: Some 82°C measured

Load truck → Stack in tarmac

Unload plane → Fly

Note: -15°C measured, 10 to 300 Hz

Load plane → Stack in tarmac

Unload plane

Note: Over 150 g drops measured

用户

Customer unloads shipper → Prep product for use → User

Note: 82°C have been measured

Summary: Many drops, temperature extremes and vibration points seen with distribution mapping.
Domestic System and Domestic Repetition

<table>
<thead>
<tr>
<th>Round trip</th>
<th>Handling</th>
<th>Truck Transit</th>
<th>Plane Transit</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>13</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>71</td>
<td>20</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>27</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>119</td>
<td>34</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
<td>41</td>
<td>11</td>
<td>23</td>
</tr>
</tbody>
</table>

International with Subassembly and International Repetition

<table>
<thead>
<tr>
<th>Round trip</th>
<th>Handling</th>
<th>Truck Transit</th>
<th>Plane Transit</th>
<th>Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>21</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>124</td>
<td>32</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>171</td>
<td>43</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>218</td>
<td>54</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>265</td>
<td>65</td>
<td>23</td>
<td>47</td>
</tr>
</tbody>
</table>
2019 ISO 11607-1/-2 Standards:
New Changes in the revised documents
Opinions on the ISO 11607-1/-2 Revisions

Most revisions for clarifications

My opinion:
The revisions have some good changes by removing a few unnecessary complications. The wording more clearly defines some previously implied intents and adds human factors (called “usability requirements”).

Removing “critical” process parameters in -2 gives more focus on the whole production process.
Major Changes Summary from ISO 11607-1 (2014)

- Eliminates the sample testing requirements of 23°C ± 1°C and 50% RH ± 2%
- The sterile barrier system shall allow the product to be presented in an aseptic manner (with notation to see the “usability” clause).
- New clause on Usability Evaluation added (human factors)
- Clause added for Reusable Sterile Barrier Systems and potential degradation limiting shelf life labeling requirements
- More explanation on “hazards” and “performance testing” with worst-case packaging system/SBS, and validated packaging system changes
- Real-time testing and accelerated testing shall start within three months of each other
- Sustainability Annex D added
- Labeling requirements for sterile barrier system to be inspected for integrity before use (Annex E)
Major Changes Summary from ISO 11607-2 (2014)

- New definitions for process - variables, parameter, and specification
- Added Risk Management section
- Harmonize definitions with ISO 11139
- “Critical” process parameters is discontinued - to include all elements required to manufacture a product that consistently meets specifications
- Note added to “revalidation” allowing targeted process validations based on design validation work
- Periodic review removed with minor process changes to be documented for potential to require the process validation status to be reviewed
Information to Understand

Human factors

✓ FDA and AAMI have guidance documents
 • Both are very device oriented so hard to determine what is best
 • Pharmaceuticals are conducting human factor testing on child resistant closures and blister tablets
 • Michigan State University, Dr. Bix and her graduate students, are doing studies
 • Document the company studies
Human Factors and Design
ISO 11607-1: 2019

Complying with the new ISO 11607-1 requires:
✓ Sterile barrier inspection before use required and a symbol to show what is the sterile barrier layer
✓ Proposed symbols are not finalized and require validation

Note: UDI for Europe and the USA to comply with trace-ability requirements but is not discussed in ISO 11607-1/-2 standards or in this presentation
New Challenges: New Concerns in Discussion
Third Party Distributors

✓ Product often packed into plastic boxes, placed on wire racks, and shipped by truck to a hospital

✓ Some are repacking, relabeling, and bundling products without performing validations

✓ Handling unclear
Hospital Handling
ANY QUESTIONS?
Jan Gates
Adept Packaging
VP, Client Solutions - West Coast
E-mail: jan.gates@adeptpackaging.com
Based in Temecula, CA